Inferring genetic networks: An information theoretic approach

نویسنده

  • L. Diambra
چکیده

In the postgenome era many efforts have been dedicated to systematically elucidate the complex web of interacting genes and proteins. These efforts include experimental and computational methods. Microarray technology offers an opportunity for monitoring gene expression level at the genome scale. By recourse to information theory, this study proposes a mathematical approach to reconstruct gene regulatory networks at coarse-grain level from high throughput gene expression data. The method provides the a posteriori probability that a given gene regulates positively, negatively or does not regulate each one of the network genes. This approach also allows the introduction of prior knowledge and the quantification of the information gain from experimental data used in the inference procedure. This information gain can be used to chose genes to be perturbed in subsequent experiments in order to refine the knowledge about the architecture of an underlying gene regulatory network. The performance of the proposed approach has been studied by in numero experiments. Our results suggest that the approach is suitable for focusing on sizelimited problems, such as, recovering a small subnetwork of interest by performing perturbation over selected genes. ∗ E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

MapReduce Algorithms for Inferring Gene Regulatory Networks from Time-Series Microarray Data Using an Information-Theoretic Approach

Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory networks (GRNs). Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions. To date, numerou...

متن کامل

Research Article MapReduce Algorithms for Inferring Gene Regulatory Networks from Time-Series Microarray Data Using an Information-Theoretic Approach

Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory networks (GRNs). Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions. To date, numerou...

متن کامل

Information-Theoretic Inference of Large Transcriptional Regulatory Networks

The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR), an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the targ...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009